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Today’s objectives

Review GMW and its round complexity
Introduce Garbled Circuits

Discuss trade-offs between GMW and GC

Explore GC security proof



GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:
O(|C|)OTs

Number of protocol rounds scales with multiplicative depth of C



Viewa;ceSM(CO) (x ’ Y) .
for ¢ in C; switch on g:
case INPUT[Alice](w):
wA «<$ {0,1}
we &« “next bit of x" @ wA
case INPUT[Bob](w):
we <$ {0,1}
wA ¢~ “next bit of y" @ w8
case XOR(wg,wqi,w,):
WoA = Woh @ Wit ; W2B < weB @ wqP
case AND(wg,wq,w>):
r «<$ {0,1}
s «$%$ {0,1}
WA <~ r @ (S & weB-wir) @ woh-wiA
w2l ¢~ s @ (r & wehwiB) @ weB-wiP
case OUTPUT(w):
wB

Simatice®(O(x,C(x,y)):
for g in C; switch on g:
case INPUT[Alice](w):
wA «<$ {0,1}
case INPUT[Bob](w):
wA «<$ {0,1}
case XOR(wg,wi,ws):
WA €~ Woh @ wqh
case AND(wg,wr,W;):
r «<$ {0,1}
s «$%$ {0,1}
WA 6~ I @ S & WehwiA
case OUTPUT(w):
wB < “next bit of C(x,y)” & wA

denotes “add this to Alice's view”



Viewa;ceSM(CO) (x ’ Y) .
for ¢ in C; switch on g:

: Simatice®™W(O(x,C(x, :
case INPUT[Alice](w): LMAtice (x,C(x,y))

for ¢ in C; switch on g:

WA & 0,1 |
$u{ } : ” ‘\\\\\\\\\\£E§e INPUT[AIICG](W):
wB ¢~ “next bit of X" @ wA
wA <$ {0,1}
case INPUT[Bob](w):
we «$ {0,1} case INPUT[Bob](w):
' I wA <$ {0,1}

wA ¢~ “next bit of y" @ ws
case XOR(wg,wqi,w,):
WA €= Woh @ Wih ; W2B & wWeB @ wiB

case AND(wg,wi,W>):
case AND(W@,Wl,Wz): - ( 0y W1, 2)
il r «$ {0,1}
r «<$ {0,1}

s <% 10,1}
s «<$ 10,1 /
$ { } WZA — r P s &P W®A°W1A

WoA €& T S WoB-w1A WA A
2 © U © o'W, case OUTPUT(w):

WB&S@ T@WA-WB @WB.WB 4" . ”
2 | o) — we ¢« “next bit of C(x,y)” & wA

case OUTPUT(w):

WB

case XOR(wg,wqi,w,):
WoA & WA P wqA

denotes “add this to Alice's view”



Viewa;ceSM(CO) (x ’ Y) .
for ¢ in C; switch on g:
case INPUT[Alice](w):
wA «<$ {0,1}
we &« “next bit of x" @ wA

SimAliceGMW(C)(X ’ C(X y y) ) :
for ¢ in C; switch on g:
case INPUT[Alice](w):

| wA «<$ {0,1}
case INPUT[Bob](w): case INPUT[Bob](w):
we «<$ {0,1} wA «$ {0,1}

wA <~ “next bit of y” @ w8 Sent by Trusted case XOR(Wo wi )
case XOR(wo,ws:,w;): Third Party 0, W1, W2 )+

WA € Wph @ wih
WoA ¢ WoA @ WiA ; WrB ¢ wpB d W
case AND(wg,wqi,w>):
case AND(wg,wq,w):
r «<$ {0,1}
r <$ 10,15 s «$ {0 1)
s <% {0,1} '
WA 6 I @ S @ WphA-wiA
WA ¢~ 1 @ (S ® WeBWihr) @ woh-wih
case OUTPUT(w):
w8 <~ s @ (r & wePrwiB) @ weB-w1B W “next bit of C(x.v)" @ wA
case OUTPUT(w): Y

WB

denotes “add this to Alice's view”



In GMW, Number of protocol rounds
scales with multiplicative depth of C
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In GMW, Number of protocol rounds
scales with multiplicative depth of C
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In GMW, Number of protocol rounds
scales with multiplicative depth of C

Our protocol’s efficiency is
. “ : fundamentally bounded by
the speed of light
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Garbled Circuits (GC)

Fundamental approach to MPC

Allows constant round protocols for arbitrary programs



[Andrew Yao, 1986,
FOCS Conference Talk]
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A Proof of Security of Yao's Protocol for Two-Party Computation

Yehuda Lindell® Benny Pinkas'

June 26, 2006

Abstract

In the mid 1980's, Yao presented a constant-round protocol for securely computing any two
party functionality in the presence of semi-honest adversaries (FOCS 1986). In this paper, we
provide a complete description of Yao's protocol, along with a rigorous proof of security. Despite
the importance of Yao's protocol to the theory of cryptography, and in particular to the field of
secure computation, to the best of our knowledge, this is the first time that an explicit proof of
security has been published.

1 Introduction

In the setting of two-party computation, two parties with respective private inputs x and y, wish
to jointly compute a functionality f(z,y) = (fi(z.y), f2(z.y)), such that the first party receives
Silz,y) and the second party receives fa(x,y). This functionality may be probabilistic, in which
case f(r,y) is a random variable. Loocsely speaking, the security requirements are that nothing
is learned from the protocol other than the output (privacy), and that the output is distributed
according to the prescribed functionality (correctness). The definition of security that has become
standard today [10, 11, 1, 4] blends these two conditions. In this paper, we consider the problem of
achieving security in the presence of semi-honest (or passive) adversaries who follow the protocol
specification, but attempt to learn additional information by analyzing the transcript of messages
received during the execution.

The first general solution for the problem of secure two-party computation in the presence of
semi-honest adversaries was presented by Yao [15]. Later, solutions were provided for the multi-
party and malicious adversarial cases by Goldreich et al. [9]. These ground-breaking results essen-
tially began the field of secure multiparty computation and served as the basis for countless papers.
In addition to its fundamental theoretic contribution, Yao's protocol is remarkably efficient in that
it has only a constant number of rounds and uses one oblivious transfer per input bit only (with
no additional oblivious transfers in the rest of the computation). Unfortunately, to the best of our
knowledge, a full proof of security of Yao’s protocol has never been published. Our motivation for
publishing such a proof is twofold. First, Yao's result is central to the field of secure computation.
This is true both because of its historic importance as the first general solution to the two-party
problem, and because many later results have relied on it in their constructions. As such, having a
rigorous proof of the result is paramount. Second, the current situation is very frustrating for those
who wish to study secure multiparty computation, but are unable to find a complete presentation
of one of the most basic results in the field. We hope to correct this situation in this paper.

“Department of Computer Science, Bar-llan University, [srael. email: 1indell@cs.biu.ac.il. Most of this work
was carried out while at IBM T.J. Watson Research, New York

"Department of Computer Science, Haifa University, lsrael. email: benny@pinkas.net. Most of this work was
carried out while at HP Labs, New Jersey.




[Andrew Yao, 1986,
FOCS Conference Talk]
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New Dircctions in Garhlaed Cirenits

A Dissertation PPresented to

1'he Academic Faculry

by

David A. Heath

In Partial Fulfillment
of the Requirements for the Degree Doctor of Philosophy in Computer Science

School of Computcr Science

Georgia Institute of Technology
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Garbler Evaluator
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Each value K]l IS @ random encryption key
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Each value K]l IS @ random encryption key
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Enc(K?, Enc(K?, K%))

Each value K]l IS @ random encryption key
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Enc(Kc(l), Enc(K?, Kg))
Enc(Kc?, Enc(K., KB))
EnC(KC}, Enc(K?, Kg))
Enc(K;, Enc(K., K(}))
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Enc(Kc?, Enc(K?, K(?))
Enc(Kc(l), Enc(K ., Kg))
Enc(K;, Enc(K?, KC(.)))
Enc(K;, Enc(K., Kg))
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Observations:

If you have Kj;, K7, you can decrypt K~

29

Enc(K?, Enc(K?, K?))
Enc(K, Enc(K}, K?))
Enc(K!, Enc(K}, K?))
Enc(K], Enc(K}, K))
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Observations:

If you have Kj;, K7, you can decrypt K~

30

Enc(K?, Enc(K?, K?))
Enc(K, Enc(K}, K?))
Enc(K!, Enc(K}, K?))
Enc(K], Enc(K}, K))
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Observations:

If you have Kj;, K7, you can decrypt K~

You cannot decrypt any row for which
you are missing at least one key
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Enc(Kc(l), Enc(K?, Kf))
Enc(Kc(l), Enc(K., Kg))
Enc(K;, Enc(K?, KB))
Enc(K;, Enc(K., Kg))
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Observations:

If you have Kj;, K7, you can decrypt K~

You cannot decrypt any row for which
you are missing at least one key

Each key is random, so zero keys look
like one keys
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Enc(Kc(l), Enc(K?, Kf))
Enc(Kc(l), Enc(K., Kg))
Enc(K;, Enc(K?, KB))
Enc(K;, Enc(K., Kg))



Basic idea:

G chooses two keys per wire
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Enc(Kc(l), Enc(K?, KC(,)))
Enc(Kc(l), Enc(K., Kg))
Enc(K;, Enc(K?, KB))
Enc(K;, Enc(K., Kg))



Basic idea:

G chooses two keys per wire

G encrypts gate output keys according to gate

nput keys Enc(K), Enc(K}, K?))
Enc(Kc(l), Enc(K}, Kg))
Enc(K;, Enc(K?, KB))
Enc(K!,Enc(K}, K}))

34



Basic idea:

G chooses two keys per wire

G encrypts gate output keys according to gate

input keys Enc(Kc?, Enc(K?, KB )

E recelves circuit input keys corresponding to Enc(Kg , Enc(K 1, K? )

the party inputs Enc(K!, Enc(K?, K?))
Enc(K!, Enc(K}, K1)

35



Basic idea:

G chooses two keys per wire

G encrypts gate output keys according to gate

input keys Enc(K?, Enc(K?, K?))
E receives circuit input keys corresponding to Enc(KC?, Enc(K,, Kg))
the party inputs Enc(K;, Enc(KO, Kg )
E decrypts each gate, eventually getting output EUC(K;a Enc(K L Kg))

keys, which can be jointly decoded
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Basic idea:
G chooses two keys per wire

G encrypts gate output keys according to gate
Input keys

E receives circuilt input keys corresponding to
the party inputs

E decrypts each gate, eventually getting output
keys, which can be jointly decoded

It is crucial that E only learn one key per wire
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Enc(K), Enc(K}, K?))
Enc(Kc(l), Enc(K}, Kg))
Enc(K;, Enc(K?, KB))
Enc(K!,Enc(K}, K}))






K° K!

a’ -~ —d

0 g1
Kb’ Kb
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0 r1
Kd’ Kd
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Encoding | Value

0

K, 0
1

K, |
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1. G “garbles” the circuit ‘l !

2. G and E run OT so that E can ’ Q
select keys for her input E

3. G sends keys for his input

4. G sends the garbled circuit and an
output decoding table

5. E evaluates the circuit by
decrypting rows

6. E learns the output and shares it
with G

51



Enc(Kc(l), Enc(K?, Kg))
Enc(Kc?, Enc(K., KB))
EnC(KC}, Enc(K?, Kg))
Enc(K;, Enc(K., K(}))
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Enc(K?, Enc(K}, K?))
Problem: 0 -
If E knows which row Enc(K/, Enc(K,,K_))
to decrypt, this table Enc( K1 Enc( KO KO))

reveals the value of
input wires EnC(KC}, Enc(K., Kg))
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Problem: Enc(Kc(l), Enc(K?, Kg))
If E knows which row Enc( Kc(z)’ Enc(K,, KB))
to decrypt, this table 0

reveals the value of EHC(K; , Enc(K ). KQ )
INput wires Enc(K;, Enc(Kl, K(}))

Solution:
G permutes rows
before sending them
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Problem: Enc(K;, Enc(K?, KC(,)))
If E knows which row Enc( K;, Enc(K,, KC}))
to decrypt, this table 0

reveals the value of Enc(Kg , EHC(K(), K(? )
Input wires EHC(KC?, Enc(Kl, KC(,)))

Solution:
G permutes rows
before sending them
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Problem: Enc(K;, Enc(K?, KC(,)))
If E knows which row Enc( K;, Enc(K,, KC}))
to decrypt, this table 0

reveals the value of Enc(Kg , EHC(K(), K(? )
Input wires EHC(KC?, Enc(Kl, KC(,)))
Solution:

G permutes rows
before sending them

56

Problem:
How does E know
which row to decrypt?

Solution:

Various solutions exist;
e.g., add an additional
pointer bit on each key



Garbled Circuit
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GMW

Garbled Circuit

Multi round Constant round
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GMW

Garbled Circuit

Multi round Constant round

Natural Extension to

. . Natural only for 2PC
multiple parties
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GMW

Multi round

Natural Extension to
multiple parties

Low bandwidth with
modern OT optimizations
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Garbled Circuit

Constant round

Natural only for 2PC

High bandwidth



GMW

Multi round

Natural Extension to
multiple parties

Low bandwidth with
modern OT optimizations

Semi-honest

61

Garbled Circuit

Constant round

Natural only for 2PC

High bandwidth

Provides natural protection
against malicious E






Two-Party Semi-Honest Security

Let f be a functionality. We say that a protocol 11 securely
computes f in the presence of a semi-honest adversary if
for each party i € {0,1} there exists a polynomial time
simulator &'; such that for all inputs Xy, X,

{Viewin(xo, X1), OutputH(xO, X))}
C

1S ¥ 0o, Y1) | Oos Y1) fxp, X1) )

63



Security?

Security against a semi-honest garbler is
straightforward in the OT hybrid model

Security against evaluator is nuanced, since we must
prove she learns nothing from the circuit encryption
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A Proaf of Security of Yao’s Protocol for Two-Party Computation

Yehuda Lindell* DBenny Pinkas'
June 26, 2006

Abstract

In the mad 1280's, Yao presented a constans-round protoco! for sccurcly computing any two-
party functionality in the presence of semi-honest adversaries [['OCS 1986). In this paper, we
provide a complete deseription of Yao’s protocol, along with a rigorous proof of security. Despice
Lhe iportance of Yao's protocol to the theory of ceyplography, and in particular to the field of
secure computation, to the best of our knowledge, this is the first time that an explicit proof of
sacurity has baen publishad.

1 Introduction

In the sesting of two-party computation, two parties with respective private inputs z and g, wish
0 jointly compute a functionality j(z.y) — (Ji(z.y), fa(z,¥y)), such that the first party receives
fi(x,y) and the second party receives folx,y). This functionality may be probabilistic, in which
case fi(z,y) is a random variable. Loosely speaking, the security recuirements are that nothing
‘s learned from the protoco’ ofher than the ontpus (privecy), and that the output is distributed
according to the prescribed functionality [correctness). The definition of sccurity that has become
standard today [10, 11, 1, 4] blends these two conditions. Te this paper, we consider Lhe problem of
achieving security in the presence of semi-honesi [or passive) adversaries who follow the protoeol
specification, but attempt to learn additional information by analyzing the transeript of messages
receivex] during the execufion.

The first gereral solution for the problem of sacure two party computation in the presence of
seri-honest adversaries was presented by Yao (15 Later, solulions were provided for the multi-
party and malicious adversarial cascs by Goldreich ¢t al. [9]. These ground-breaking results cssen-
tially began the Eeld of secure multiparty computation and served as the basis for countless papers.
In addition to 18 fundamental theoretic contribution, Yao’s protocol i3 remarkably efhicient in that
it nas only a constant number ¢f rounds and uses cne oblivious transfer per input bit only (with
no additinnal aohlivions transfers in the rest of the computation). Unforturately, to the hest of omr
imowledge. a full proof of security of Yac's protocol has never been published. Our motivation for
publishing such a proof is lwolold. First, Yao's resull is central to the field of secure eompulation.
This is true both because of its historic importance as the first general solution to the two-party
problem, and because many later results have relied on it in their constructions. As such, heving a
rigorous proof of the result is paramount. Second, she current situation i3 very frustrating for those
who wish to studyv secure multiparty computation, but are unable t¢c find a complete nresentation
of one of the mast hasic resnlts in the field. We hope to norrect this situation in this paper.

“Departient of Compuler Scisnce, Bar-Tlen Univessity, [srael. email: lindell@ces.biu.ac.il. Most of this work
was carried oul while at IBM T.J.Watson Research, New Yok,

"Departicent of Computer Science, Haifa University, [stael. email. Lerny8pinkas.aet. Most of this work was
carried out while at 1IP* Labs, New Jarsey.
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Pseudorandom Function (PRF)

A function family I is considered pseudorandom if
the following indistinguishability holds

Ideal:
Real: T <~ EmptyMap
k& (0.1} .
— Lookup(m):
Lookup(m): if megT:
return F(k,m) Tim] < {0,1)°u

return T[m)

“If you don’t know the key, F looks random”



Enc(KC}, Enc(K?, KC(,)))
Enc(K;, Enc(K., K(}))
Enc(Kg, Enc(K?, K(?))
Enc(Kg, Enc(K., KC(,)))
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Enc(K!, Enc(K?, K?))
a> K, Enc(K!, Enc(K}, K1)
Enc(K?, Enc(K?, K?))
Enc(K), Enc(K}, K?))
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a e {Kg, KC}}

be (KK}

1 0 0
0 K F(K!, F(K°, K?))
a’ ™ p 1 1 1
F(KaaF(KbaKc))
F(K?, F(K?, K))
F(K, F(K], K%))

Use PRF to instantiate encryption



0 p0  F(K;, F(K),K)))
F(K,,F(K,,K})
F(K), F(K),K))
F(KY, F(K,, K?))
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0 p0  F(K;, F(K),K))) random

F(K!,F(K!,K")) random
F(K?, F(K?, K)) F(K?, F(K?, KY))
F(K°, F(K}, K?)) F(K°, F(K}, K?))

By PRF security; K; is not in E’s view



k0 KO random
random

F(K?, F(K?, K?))

F(K?, F(K}, K?))

(2



-~

Q

|

E
KO, K,? random random
random C random
F(KO, F(KY,K%)  —  F(K°, F(K° K°))

F(K, F(K], K%))

F(K 3 ,random) t

By PRF security; K, is not in E’s view




-~

E
random
KKy
randaom . : 1
FIKO, FKY. KO) Notice, mentions of K.

are removed from the

F (Kc(l), random) .
gate encryption!



-~

E
k0 KO random
P andom Once all gates that
F(K?, F(K?, K?)) take a, b as Iinput are
F(K?, random) gone, K, Kg are just

uniform strings
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P Q
E
K.K random
“7 Landom Once all gates that
F(K,,F(K,, K.)) take a, b as input are
F(K,,, random) gone, K, Kg are just

uniform strings



-~

Q

|

E
K.K random
“7 Landom Once all gates that
F(K,,F(K,, K.)) take a, b as input are
t F(K,,, random) gone, K, Kg are just

uniform strings

Simulator outputs encrypted truth
tables that look like this



Today’s objectives

Review GMW and its round complexity
Introduce Garbled Circuits

Discuss trade-offs between GMW and GC

Explore GC security proof



